MCQ Questions for Class 11 Maths Chapter 10 Straight Lines with Answers

Spread the love

MCQ Questions for Class 11 Maths Chapter 10 Straight Lines with Answers

Question 1.
The locus of a point, whose abscissa and ordinate are always equal is
(a) x + y + 1 = 0
(b) x – y = 0
(c) x + y = 1
(d) none of these.Answer

Answer: (b) x – y = 0


Question 2.
The equation of straight line passing through the point (1, 2) and parallel to the line y = 3x + 1 is
(a) y + 2 = x + 1
(b) y + 2 = 3 × (x + 1)
(c) y – 2 = 3 × (x – 1)
(d) y – 2 = x – 1

Answer: (c) y – 2 = 3 × (x – 1)


Question 3.
What can be said regarding if a line if its slope is negative
(a) θ is an acute angle
(b) θ is an obtuse angle
(c) Either the line is x-axis or it is parallel to the x-axis.
(d) None of theseAnswer

Answer: (b) θ is an obtuse angle
Hint:
Let θ be the angle of inclination of the given line with the positive direction of x-axis in the anticlockwise sense.
Then its slope is given by m = tan θ
Given, slope is positive
⇒ tan θ < 0
⇒ θ lies between 0 and 180 degree
⇒ θ is an obtuse angle


Question 4:
The equation of the line which cuts off equal and positive intercepts from the axes and passes through the point (α, β) is
(a) x + y = α + β
(b) x + y = α
(c) x + y = β
(d) None of theseAnswer

Answer: (a) x + y = α + β
Hint:
Let the equation of the line be x/a + y/b = 1 which cuts off intercepts a and b with
the coordinate axes.
It is given that a = b, therefore the equation of the line is
x/a + y/a = 1
⇒ x + y = a …..1
But it is passes through (α, β)
So, α + β = a
Put this value in equation 1, we get
x + y = α + β


Question 5.
Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are coincedent if
(a) a1/a2 = b1/b2 ≠ c1/c2
(b) a1/a2 ≠ b1/b2 = c1/c2
(c) a1/a2 ≠ b1/b2 ≠ c1/c2
(d) a1/a2 = b1/b2 = c1/c2Answer

Answer: (d) a1/a2 = b1/b2 = c1/c2
Hint:
Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are coincedent if
a1/a2 = b1/b2 = c1/c2


Question 6:
The equation of the line passing through the point (2, 3) with slope 2 is
(a) 2x + y – 1 = 0
(b) 2x – y + 1 = 0
(c) 2x – y – 1 = 0
(d) 2x + y + 1 = 0Answer

Answer: (c) 2x – y – 1 = 0
Hint:
Given, the point (2, 3) and slope of the line is 2
By, slope-intercept formula,
y – 3 = 2(x – 2)
⇒ y – 3 = 2x – 4
⇒ 2x – 4 – y + 3 = 0
⇒ 2x – y – 1 = 0


Question 7.
The slope of the line ax + by + c = 0 is
(a) a/b
(b) -a/b
(c) -c/b
(d) c/bAnswer

Answer: (b) -a/b
Hint:
Give, equation of line is ax + by + c = 0
⇒ by = -ax – c
⇒ y = (-a/b)x – c/b
It is in the form of y = mx + c
Now, slope m = -a/b


Question 8.
Equation of the line passing through (0, 0) and slope m is
(a) y = mx + c
(b) x = my + c
(c) y = mx
(d) x = myAnswer

Answer: (c) y = mx
Hint:
Equation of the line passing through (x1, y1) and slope m is
(y – y1) = m(x – x1)
Now, required line is
(y – 0 ) = m(x – 0)
⇒ y = mx


Question 9.
The angle between the lines x – 2y = 4 and y – 2x = 5 is
(a) tan-1 (1/4)
(b) tan-1 (3/5)
(c) tan-1 (5/4)
(d) tan-1 (2/3)

Answer: (c) tan-1 (3/4)


Question 10.
Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are parallel if
(a) a1/a2 = b1/b2 ≠ c1/c2
(b) a1/a2 ≠ b1/b2 = c1/c2
(c) a1/a2 ≠ b1/b2 ≠ c1/c2
(d) a1/a2 = b1/b2 = c1/c2

Answer: (a) a1/a2 = b1/b2 ≠ c1/c2


Question 11.
The locus of a point, whose abscissa and ordinate are always equal is
(a) x + y + 1 = 0
(b) x – y = 0
(c) x + y = 1
(d) none of these.Answer

Answer: (b) x – y = 0


Question 12.
In a ΔABC, if A is the point (1, 2) and equations of the median through B and C are respectively x + y = 5 and x = 4, then B is
(a) (1, 4)
(b) (7, – 2)
(c) none of these
(d) (4, 1)

Answer: (b) (7, – 2)


Question 13.
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150 degrees with the positive direction of the y-axis. Then the equation of line is
(a) x + y = 14
(b) √3y + x = 14
(c) √3x + y = 14
(d) None of these

Answer: (c) √3x + y = 14


Question 14.
If two vertices of a triangle are (3, -2) and (-2, 3) and its orthocenter is (-6, 1) then its third vertex is
(a) (5, 3)
(b) (-5, 3)
(c) (5, -3)
(d) (-5, -3)

Answer: (d) (-5, -3)


Question 15.
The sum of squares of the distances of a moving point from two fixed points (a, 0) and (-a, 0) is equal to 2c² then the equation of its locus is
(a) x² – y² = c² – a²
(b) x² – y² = c² + a²
(c) x² + y² = c² – a²
(d) x² + y² = c² + a²

Answer: (c) x² + y² = c² – a²


Question 16.
The equation of the line through the points (1, 5) and (2, 3) is
(a) 2x – y – 7 = 0
(b) 2x + y + 7 = 0
(c) 2x + y – 7 = 0
(d) x + 2y – 7 = 0Answer

Answer: (c) 2x + y – 7 = 0


Question 17.
What can be said regarding if a line if its slope is zero
(a) θ is an acute angle
(b) θ is an obtuse angle
(c) Either the line is x-axis or it is parallel to the x-axis.
(d) None of these

Answer: (c) Either the line is x-axis or it is parallel to the x-axis.


Question 18.
Two lines are perpendicular if the product of their slopes is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer: (c) -1


Question 19.
y-intercept of the line 4x – 3y + 15 = 0 is
(a) -15/4
(b) 15/4
(c) -5
(d) 5

Answer: (d) 5


Question 20.
The equation of the locus of a point equidistant from the points A(1, 3) and B(-2, 1) is
(a) 6x – 4y = 5
(b) 6x + 4y = 5
(c) 6x + 4y = 7
(d) 6x – 4y = 7

Answer: (b) 6x + 4y = 5

MCQ Questions for Class 11 Maths Chapter 10 Straight Lines with Answers

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to top